Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
COVID ; 3(1):51-64, 2023.
Article in English | Academic Search Complete | ID: covidwho-2246780

ABSTRACT

Due to a large number of mutations in the spike protein and immune escape, the Omicron variant (B.1.1.529) has become a predominant variant of concern (VOC) strain. To prevent the disease, we developed a candidate inactivated vaccine (Omicron COVID-19 Vaccine (Vero Cell), Inactivated). To evaluate the safety of the vaccine, we tested the repeat-dose toxicity in Sprague-Dawley (SD) rats. The doses were administered randomly to three groups: physiological saline solution (control), aluminum adjuvant in PBS solution adjuvant (adjuvant group), and low-dose and high-dose omicron vaccines (vaccine group) for 6 weeks. The SD rats were allowed to recover for 4 weeks after withdrawal. We evaluated the physiological condition of the rats, including their ophthalmological condition, body weight, food intake, body temperature, blood biochemistry, urine, neutralizing antibody, inflammation at the injection site, and organs weight. In summary, no dose-dependent adverse toxicological changes were observed, and a recovery trend was obvious, which proved the preclinical safety of the candidate omicron vaccine and provided evidence for clinical trials in humans. [ FROM AUTHOR] Copyright of COVID is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
COVID ; 3(1):51-64, 2023.
Article in English | MDPI | ID: covidwho-2166290

ABSTRACT

Due to a large number of mutations in the spike protein and immune escape, the Omicron variant (B.1.1.529) has become a predominant variant of concern (VOC) strain. To prevent the disease, we developed a candidate inactivated vaccine (Omicron COVID-19 Vaccine (Vero Cell), Inactivated). To evaluate the safety of the vaccine, we tested the repeat-dose toxicity in Sprague-Dawley (SD) rats. The doses were administered randomly to three groups: physiological saline solution (control), aluminum adjuvant in PBS solution adjuvant (adjuvant group), and low-dose and high-dose omicron vaccines (vaccine group) for 6 weeks. The SD rats were allowed to recover for 4 weeks after withdrawal. We evaluated the physiological condition of the rats, including their ophthalmological condition, body weight, food intake, body temperature, blood biochemistry, urine, neutralizing antibody, inflammation at the injection site, and organs weight. In summary, no dose-dependent adverse toxicological changes were observed, and a recovery trend was obvious, which proved the preclinical safety of the candidate omicron vaccine and provided evidence for clinical trials in humans.

4.
Vaccines (Basel) ; 10(12)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2143787

ABSTRACT

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread to more than 230 countries and territories worldwide since its outbreak in late 2019. In less than three years, infection by SARS-CoV-2 has resulted in over 600 million cases of COVID-19 and over 6.4 million deaths. Vaccines have been developed with unimaginable speed, and 11 have already been approved by the World Health Organization and given Emergency Use Listing. The administration of several first-generation SARS-CoV-2 vaccines has successfully decelerated the spread of COVID-19 but not stopped it completely. In the ongoing fight against viruses, genetic mutations frequently occur in the viral genome, resulting in a decrease in vaccine-induced antibody neutralization and widespread breakthrough infection. Facing the evolution and uncertainty of SARS-CoV-2 in the future, and the possibility of the spillover of other coronaviruses to humans, the need for vaccines with a broad spectrum of antiviral variants against multiple coronaviruses is recognized. It is imperative to develop a universal coronavirus or pan-coronavirus vaccine or drug to combat the ongoing COVID-19 pandemic as well as to prevent the next coronavirus pandemic. In this review, in addition to summarizing the protective effect of approved vaccines, we systematically summarize current work on the development of vaccines aimed at suppressing multiple SARS-CoV-2 variants of concern as well as multiple coronaviruses.

5.
Viruses ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: covidwho-2006233

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and ß-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel ß-sheet, parallel ß-sheet, ß-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Formaldehyde , Humans , Propiolactone/pharmacology , Vaccines, Inactivated
6.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1969529

ABSTRACT

Since the beginning of the COVID-19 pandemic, numerous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, including five variants of concern (VOC) strains listed by the WHO: Alpha, Beta, Gamma, Delta and Omicron. Extensive studies have shown that most of these VOC strains, especially the currently dominant variant Omicron, can escape the host immune response induced by existing COVID-19 vaccines to different extents, which poses considerable risk to the health of human beings around the world. In the present study, we developed a vaccine based on inactivated SARS-CoV-2 and an adjuvant consisting of aluminum hydroxide (alum) and CpG. The immunogenicity and safety of the vaccine were investigated in rats. The candidate vaccine elicited high titers of SARS-CoV-2-spike-specific IgG antibody and neutralizing antibody in immunized rats, which not only neutralize the original SARS-CoV-2, but also showed great cross-neutralization activity against the Beta, Delta and Omicron variants.

7.
Vaccines (Basel) ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1939065

ABSTRACT

In response to the fast-waning immune response and the great threat of the Omicron variant of concern (VOC) to the public, we report the pilot-scale production of an inactivated Omicron vaccine candidate that induces high levels of neutralizing antibody titers to protect against the Omicron virus. Here, we demonstrate that the inactivated Omicron vaccine is safe and effective in recalling immune responses to the HB02, Omicron, and Delta viruses after one or two doses of BBIBP-CorV. In addition, the efficient productivity and good genetic stability of the manufactured inactivated vaccine is proved. These results support the further evaluation of the Omicron vaccine in a clinical trial.

8.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1911699

ABSTRACT

It has been reported that the novel coronavirus (COVID-19) has caused more than 286 million cases and 5.4 million deaths to date. Several strategies have been implemented globally, such as social distancing and the development of the vaccines. Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have appeared, such as Alpha, Beta, Gamma, Delta, and Omicron. With the rapid spread of the novel coronavirus and the rapidly changing mutants, the development of a broad-spectrum multivalent vaccine is considered to be the most effective way to defend against the constantly mutating virus. Here, we evaluated the immunogenicity of the multivalent COVID-19 inactivated vaccine. Mice were immunized by multivalent COVID-19 inactivated vaccine, and the neutralizing antibodies in serum were analyzed. The results show that HB02 + Delta + Omicron trivalent vaccine could provide broad spectrum protection against HB02, Beta, Delta, and Omicron virus. Additionally, the different multivalent COVID-19 inactivated vaccines could enhance cellular immunity. Together, our findings suggest that the multivalent COVID-19 inactivated vaccine can provide broad spectrum protection against HB02 and other virus variants in humoral and cellular immunity, providing new ideas for the development of a broad-spectrum COVID-19 vaccine.

9.
Cell ; 182(3): 713-721.e9, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-549043

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health. The development of a vaccine is urgently needed for the prevention and control of COVID-19. Here, we report the pilot-scale production of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) that induces high levels of neutralizing antibodies titers in mice, rats, guinea pigs, rabbits, and nonhuman primates (cynomolgus monkeys and rhesus macaques) to provide protection against SARS-CoV-2. Two-dose immunizations using 2 µg/dose of BBIBP-CorV provided highly efficient protection against SARS-CoV-2 intratracheal challenge in rhesus macaques, without detectable antibody-dependent enhancement of infection. In addition, BBIBP-CorV exhibits efficient productivity and good genetic stability for vaccine manufacture. These results support the further evaluation of BBIBP-CorV in a clinical trial.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Drug Evaluation, Preclinical/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccines, Inactivated/therapeutic use , Viral Vaccines/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/virology , Disease Models, Animal , Female , Guinea Pigs , Immunogenicity, Vaccine , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Phylogeny , Pneumonia, Viral/virology , Rabbits , Rats , Rats, Wistar , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Vero Cells , Viral Vaccines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL